
6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 1/31

Online Database Migration by Dual-Write: This is
not for Everyone
(to be more precise: for almost no-one)

Christoph Bussler Follow

Jun 23 · 42 min read

tl;dr
Online database migration is an important — if not the most important — approach

when migrating between schemas, between databases, or between data centers or

clouds. There are many variations to online database migration (aka, zero downtime

database migration): a popular one is dual-write and in my opinion a — if not the most

— “dangerous” one when data consistency is paramount. This blog rationalizes two

different online database migration variations (dual-write and change data capture

(CDC) based) to highlight the risks involved when using dual-write online database

migration; and the length of this blog reflects the “danger” when embarking on it.

My goal is to have you think twice, three or even four times before taking the dual-write

fork in the database migration road and point out only the toughest technical problems

you will have to face and to solve.

Online database migration
In a nutshell, the goal of online database migration is to migrate from one or more

source databases to one or more target databases with minimal source database

downtime and — as a consequence — minimal client downtime. Ideally the downtime is

zero, even though it is not possible in all cases, as clients have to reconnect to the target

database after the online migration is complete. Typical migrations are from an on-

premises data center to a cloud or between clouds, or even within a cloud.

Key requirements and expectations

https://medium.com/@chbussler?source=post_page-----cb4307118f4b----------------------
https://medium.com/@chbussler?source=post_page-----cb4307118f4b----------------------
https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b?source=post_page-----cb4307118f4b----------------------


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 2/31

In order to make migration predictable and reliable with as little effort as possible, the

following key requirements are expressed in many database migration projects:

Migration is complete: all data in the source database is completely migrated (or a

defined subset of the source database if not all data is to be migrated)

Migration is consistent: the target database is fully consistent (transactional

consistency), no data loss, no data duplicates, and no transaction reordering

Migration is repeatable: target databases can be recreated and migration started

from the beginning (for example, to mitigate unforeseen errors)

Migration does not impact client operations: clients operate without any impact

during ongoing migration (for example, no downtime)

Migration does not impact client code: client code does not have to be changed to

support migration to avoid any implementation effort (aka, design, testing, etc.)

Migration can be tested: testing of migration must be possible, especially of

migrations where the source schema is different from the target schema, without

impacting the production clients accessing the source databases

Brief terminology
Source, target database. The source database has the current data set and the

target database is the database the data from the source database is migrated to. The

target database might or might not have the same schema as the source database. If

the schemas are different in the source and target database, data transformation is

required.

Primary database. At any point in time, either the source database or the target

database is the source of truth, aka, the primary database accessed by clients. In a

given database migration there will be the point in time where the target database

will be made the primary and becomes the authoritative source of truth for clients.

Before discussing the dual-write variant to online database migration the CDC (change

data capture) online database migration process (that does not rely on dual-write) is

summarized next as a baseline for comparison. The CDC online database migration

process is widely used and a well-tested variant. Briefly outlining the CDC online



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 3/31

database migration process makes the comparison between the two variants easier later

on.

Baseline: CDC online database migration process
The basic architecture of CDC online database migration is outlined in this diagram:

CDC online database migration architecture

One or more clients operating on the source database are not affected by the separate

migration system migrating the data to the target database. The migration system relies

on transaction logs to observe database changes. Once migration completed, the clients

can be switched over to the target database.

The CDC online database migration process (in very detail discussed here: [5] [6]), has

the following steps (assuming one source and one target database for the discussion in

this blog, multiple source and target databases are supported equally in a production

environment):

Create a target database. This might be the same or a different database engine

compared to the source database, and it might have the same or a different

(modified schema) compared to the source database.

Create the migration logic using migration technology. This can be built-in

functionality a database provides (like logical replication), or it can be a separate

migration system like Striim or Fivetran (to name two examples from a large variety

of available migration technologies).

Perform an initial load. This is the transfer (including possibly data

transformation) of a transactionally consistent source database snapshot to the

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://www.striim.com/
https://fivetran.com/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 4/31

target database.

Perform continuous migration using CDC. Change data capture (CDC) is a

mechanism that reads the database’s transaction log and applies committed source

database transactions in commit order exactly once to the target database (including

possibly data transformation). This process starts from the database time the initial

snapshot was taken to ensure all concurrently ongoing transactions during the initial

load are captured and migrated. At the end of the blog an alternative to transaction

log access is discussed in case the source database does not expose those.

Complete draining. When the day and time of the cut-over of clients from the

source database (former primary) to the target database (current primary) nears,

write access to the source database is stopped. The remaining transactions from the

transaction log that have not been migrated yet to the target database have to be

migrated (“drained”) to the target database. If configured carefully, the draining

takes place in a matter of seconds.

Cut-over clients. At this point the target database has all data from the source

database, and their state is equivalent wrt. transactional consistency, clients connect

to the target database, access it and continue the production workload.

The key is that during the initial load, and the continuous migration, clients can

continue to access the database without restriction and without modification of any

client code. This means that the clients and the database migration are ongoing

concurrently. The only unavailability of the source or target database is during the

draining and cut-over phase, which can be extremely short. Depending on the strategy,

additional testing can take place on the target database before clients reconnect to the

target database adding to the client downtime for reasons of safety.

The important aspect to note is that clients are not impacted by the migration and their

code base does not have to be modified at all in order to accomplish the near-zero

downtime database migration.

Also important to note is that this variant supports migration between different database

engines and schemas without having to modify the client accessing the source database.

Of course, the client for the target database has to be aware (code-wise) of the

difference of the schema and the difference in query and transaction processing on the



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 5/31

target database. The new version of the client for the target database is implemented

and can be tested during the online database migration without impacting the source

database.

The above process does not describe an optional fallback process (for brevity in context

of this blog) that is important for many migrations in order to deal with unforeseen

problems or issues even after the migration was completed a few weeks after the cut-

over to the new target database.

Dual-write online database migration process
The overall architecture of the dual-write variant is shown in this diagram:

Dual-write online database migration architecture

One or several clients read and write from a source as well as target database and

implement the database migration functionality.

A variety of references outline a dual-write migration variant to online database

migration, for example, Online migrations at scale [1], Safe Database Migration Pattern

Without Downtime [2], or Zero Downtime Table Migrations using a Double Write

Methodology [3]. Please note, [2] is intermittently available at the time of this writing

and you might have to go to the Internet archive to retrieve the content.

The overall dual-write migration process is as follows based on the above reference [2]

(as this reference has the most detailed set of steps — all steps are directly cited from

https://cloud.google.com/solutions/database-migration-concepts-principles-part-2#fallback_processes
https://stripe.com/blog/online-migrations
https://stripe.com/blog/online-migrations
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime/
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime
https://engineering.gusto.com/old-write/
https://engineering.gusto.com/old-write/
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime
https://web.archive.org/web/20200507140845/http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime/
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 6/31

[2]). Other resources are following the same or a similar process:

Step 1: Build and deploy the “new” database schema onto production.

Step 2: Add a new DAO to your app that writes to the “new” database.

Step 3: Start writing to the “new” database but use the “old” one as primary.

Step 4: Enable the read path. Change the feature toggle to enable reading from both

databases.

Step 5: Making the “new” database the primary one. Change the feature toggle to

first write to the new database (you still read from both but now prefer the new DB).

Step 6: Stop writing to the “old” database (read from both).

Step 7: Eagerly migrate data from the “old” database to the “new” one.

Step 8: Delete the “old” DAO.

The steps are explained and discussed in detail in the references and would take up too

much space to cite here verbatim, however, before continuing reading this blog below, I

encourage you to take a few minutes and read at least [2] in case you want to

understand the outlined steps in more detail.

[3] outlines the special case of migrating between tables within the same database, not

migrating data between databases. While some aspects are similar, some are different.

The differences are called out separately below.

Preliminaries — system properties
Unless you are migrating tables within the same database from source to target tables as

discussed in [3] (which I would consider a rare case based on my experience) and you

are instead migrating between databases in different database servers (instances), the

following system properties are very important to be aware of:

Distributed transactions. Cross-database transactions are only available if you use

a distributed transaction manager that can coordinate between the two servers

chosen and the servers can participate in the distributed transaction protocol. In all

http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime/#ixzz3vsEunxmA
https://engineering.gusto.com/old-write/
https://engineering.gusto.com/old-write/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 7/31

other cases, transactions do not span the two databases and any access of both

databases is not serialized (and therefore not automatically ensuring data

consistency). Neither sequential nor concurrent access of both databases is

serialized by the two databases involved).

Consistent backup. Since the two databases are independent of each other, it is not

possible to have a consistent backup of both databases unless you stop write access

on both when creating backups. Two backups, one for each database, are only

consistent when there is no change during the backup in any of the databases.

High availability and disaster recovery. The databases are independent of each

other wrt. high-availability or disaster recovery. If one database (source or target

database) fails over then the fail over process is independent of the other database.

There is in general a possibility of downtime as well as a set of lost transactions

during high-availability or disaster recovery that might violate data consistency (in

the absence of distributed transactions). In this case both databases are out of sync

and have to be brought in sync first before continuing migration. For example, the

fail over of the target database loses transactions that are present in the source

database. The lost transactions have to be determined and migrated again.

Networking and latency. The two databases in general might run in different

environments with different network properties (like throughput or routing

structure). This difference might impact latency between clients and the database

access interface. In the absence of distributed transactions this might lead to

unintentional reordering of transactions between the source and target database

from a client perspective leading to data inconsistency.

In high-volume production environments above properties are important as they might

affect how to implement online database migration so that any issue or problem at

runtime does not compromise data integrity and data consistency. In my opinion,

addressing above issues are complex and a hard engineering problem in context of the

dual-write variant.

Preliminaries — sample use case: user and addresses
The following use case based on a relational model is used to illustrate specific aspects

during online database migration. It is kept simple for the purpose of keeping this blog



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 8/31

short and helping illustrate only a basic set of query behavior. In a production database

with a more complex data model (relational or non-relational) additional query

behavior might be important to analyze and to implement.

Sample use case: user and its addresses

The schema consists of two entities, user and address, and a user can have zero, one or

more addresses. An address cannot exist on its own and is part-of a user. The

address.user_id has a foreign key relationship with user.id. The columns characterize a

user and account respectively, and are kept to a minimum for illustration.

While the use case is expressed in the form of a relational schema, the following

discussion applies to all data models as the relational model is capable of effectively

representing all other known data models (although not necessarily efficiently).

Discussion of dual-write database migration process
The following discussion is guided by data consistency as the guiding principle. Any

choice or argument is made to ensure that a target database after migration and before

clients are switched over to it is complete and consistent. In the following, each

discussion topic discusses both, the dual-write variant as well as the CDC variant.

Client code modification



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 9/31

Dual-write requires client code modification (see Step 2 above). The client code has

several responsibilities: implement the business logic, access the source database, access

the target database, and in case the source and target schema are different, it has to

implement the transformation between the two databases and transformation of results

before returning the results.

Each code modification requires testing and this means that tests and test data sets have

to be developed and maintained that confirm that no regressions take place (in the

business logic as well as the migration logic (!)). The difficult aspect is that in case of

dual-write migration the target database is continuously changed and is not reset for

every migration or business logic code change, so any test database has to be maintained

accordingly.

Code modifications can be required based on business logic improvement or migration

logic changes. The references indicate that dual-write migration can take weeks or

months. In this time frame business logic modifications might be required in addition to

the necessary migration logic changes. Since these are orthogonal functionality, their

independence and isolation has to be tested as well.

If source and target databases have a different schema, as soon as the target database is

made the primary source of the data, the client code has to work on the target schema

and therefore has to be modified accordingly. At this time (after the target database is

made the primary) the client code accesses the target database first, then the source

database. Any transformation has to now be from the target to the source schema. This

is the reverse direction from before when the client was writing to the source database

first.

The target database might have parts of its schema in place for transformation purposes

only and those parts will have to be removed [1]. It is possible to delay the target schema

changes in the client code to after the migration is completed to limit code changes

during the migration itself.

CDC database migration: client code accessing the source database does not have to be

modified, and client code accessing the target database after migration has to be

modified only in case the target database has a different schema from the source

database. That modification of the client code can be implemented and tested

https://stripe.com/blog/online-migrations


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 10/31

independently and separate from the database migration (and the version of the client

code accessing the source database).

Multiple concurrent clients
If the source database is accessed by several clients concurrently, the dual-write

migration has to be implemented and coordinated across all clients in order to ensure

that the clients do not conflict with each other while accessing the correct and

consistent data. This requires migration logic to deterministically find out if data a client

accesses is to be migrated or was already migrated.

CDC database migration: client logic does not have to be modified; any number of

concurrent clients can access the source database.

Data access path management
A client has to be able to determine if data it is about to access was already migrated or

not (Step 3). If not, then it has to access both, the source and the target database. There

are three operations that have to be modified for database migration: insert, update,

delete.

Insert: data has to be inserted into both databases

Update: data is to be updated in the target database (in addition to the source

database) only if the data was migrated before

Delete: data is to be deleted in the target database (in addition to the source

database) only if the data was migrated before

The references do not outline how the data path management is implemented that

allows a client to determine if migration for data took place already or not. It could be a

dynamic query to the target database to find out if the data in question is present.

Another alternative is to have a lookup function on managed metadata that for a given

identifier (e.g. primary key) returns if the data was migrated or not. If the lookup

function is based on a persistent mapping (e.g. in a database table) then concurrent

queries to the same primary key might fail if one of the queries migrates the data and a

subsequent query tries to update it as the code executing the second query might not

have picked up the change in the access path.



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 11/31

No matter the path management implementation, the lookup must be deterministic for

the client to get the correct answer. Below more complex querying cases are discussed in

more detail based on the example use case.

Since the roles of the databases change (Step 5) the access paths for read operations has

to be changed as well as the write path so that the code accesses the primary database

first.

CDC database migration: since clients are not modified and access only the source or the

target database, no data access path management is required.

Process
When data consistency is the topmost goal, it must be clear throughout the whole

migration process, which of the databases that are part of the migration is the primary

database that contains the consistent and complete source-of-truth state at any point in

time.

In any migration process use case, the source database is the primary before the

migration begins, and the target database is the primary after the migration completed.

Which one is the primary during the migration process when the migration is ongoing?

In the CDC database migration variant, the source database is the primary throughout

the whole migration process. Only after it is completed the target is made the primary

short before the clients are cut over from the source to the target. It is clear cut.

In the dual-write variant it is actually not clear what the situation is based on the above

cited process. Step 3 clearly states that the source database is the primary database. Step

5 states that the target database is made the primary (and acknowledges that the source

might become inconsistent as writes to the source are “best effort” only). However, only

at step 7 back fill takes place, aka, not yet migrated data is migrated from the source to

the target. This means that at step 5, even though the target is made the primary, it does

not have the complete data set. Furthermore, step 6 states to stop writing to the source

database. At this point no database has the complete and consistent data set as both

databases converge from each other. Only after step 7 (back fill) the target database is

complete in the sense that all data is migrated. There are possibly business logic errors

being caused by this variant for the time when no database has the complete and

consistent data set (see next paragraph).



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 12/31

From my viewpoint I would ensure during any migration process that one of the

databases is the primary at any point in time holding the complete and consistent data

set in order to actually achieve and provide data consistency.

The references refer to “changing the read/write paths” to change the order of which

database is written to first or read from first. When data consistency is important, the

order of which database is accessed first does not matter as the primary must be

complete and consistent.

Details of migration logic functionality
While the initial expectation is that the dual-write variant only requires the same access

logic (read, insert, update, delete) executed twice, once on the source and once on the

target database, this does not hold true when starting addressing the various detailed

database access use cases. In the following I will discuss some of them in order to

illustrate the complexity of required changes to the client code. Every time a dual-write

takes place the access path management might have to be updated depending on its

implementation (see the discussion above).

The goal is to migrate the data from the source to the target database while preserving

data consistency. At any point, the data must be consistent, and all read access must

return a correct result — the presence of a target database must not introduce

inconsistencies.

First, inserts are discussed:

Primary key row insert (without relationship). A single row insert by primary key

can take place in each, the source and target database, in the same way. In the use

case, a new user can be added as a single insert.

Primary key row insert (with explicit relationship). A single row insert by

primary key that has a foreign key relationship can be different for the source

database and the target database. In the use case, a new address for a given user is a

single insert into the source database. In the target database, however, the code has

to first check if the user is present since the address has a foreign key relationship to

the user. If not, the user has to be migrated from the source before the address can

be inserted.



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 13/31

Primary key row insert (with implicit relationship). A single row insert by

primary key that has an implicit relationship can be different for the source database

and the target database. An implicit relationship is not defined by the schema, but

managed by the client by means of code. If an insert requires related data to be

present (one or more relationships), the code for the target database has to check for

the data presence and has to ensure its migration if it is not in the target database.

Implicit relationships are difficult as those cannot be found by examining the

database schema, but only by understanding the business logic in the client code.

Primary key row batch insert. Batch inserts on the target only work for those insert

use cases that do not involve a relationship. As soon as a relationship is involved

checks have to be performed (see discussion in bullet points above).

Next, updates are discussed:

Primary key row update (all columns). If all columns are updated, in the target

database a check has to ensure that the row is present first. If not, it has to be

migrated first, and then updated. Alternatively the update can be converted into an

insert. It depends on additional context (like database triggers or predicates in the

update statement or relevance for transaction log content) which way is chosen.

Primary key row update (subset of columns). If a subset of columns are to be

updated, the row has to be migrated first, before the update takes place.

Primary key row update with relationships. A row update with explicit or implicit

relationships (like a foreign key) has to ensure that the mandatory related data (one

or many) is present first in order to not violate the referential integrity. In addition,

the row to be updated has to be present or migrated first.

Primary key row batch updates. Batch updates on the target database only work if

all rows that are to be updated are present. Any update requiring additional logic

cannot be part of a batch update.

The next discussion is about deletes:

Primary key row delete (without relationship). A delete can take place on the

target database if the row is present or not. If it is not present, the delete will



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 14/31

succeed. However, context matters: if transactions logs on the target have to be

consistent with those on the source as well, then a delete has to be preceded with

migrating the data first so that the delete actually takes place on the target database.

Other examples are triggers that might require the delete to actually take place.

Primary key row delete (with implicit or explicit relationship). A delete or a row

might have to trigger the delete of additional rows. For example, if a user is deleted,

all addresses have to be deleted. In case of relationships specified in a schema the

database supervises those; in case of implicit relationships the code has to ensure

proper traversal and deletion itself.

Primary key row batch deletes. As before, a batch delete only works if no

additional logic has to be executed when deleting.

Next up is read access:

Read from source as the primary database. If the source database is the primary

database all read operations are executed on the source database as it has the source

of truth and represents the consistent database state.

Read from target as the primary database. The target database can only be the

primary database if it has the complete set of data that is consistent as well. Until the

source is switched off, this implies that both, the source and the target are 100%

consistent (aka, a perfect copy of each other or are perfectly in sync wrt. data

consistency in case of different schemas). The above process taken from [2] does not

accomplish this: it makes the target database the primary (step 5) without having

migrated all data (step 7). I think the term “primary” in the reference refers to which

database is written to first, and has no meaning wrt. data consistency — which is the

customary use of the term “primary” in database architectures.

Read from both databases? Reference [2] mentions obtaining read results by

accessing both databases and combining (“merging”) the results based on

timestamps in the schema (step 4). This has several implications: first, a timestamp

has to be added to every table and the timestamp has to be taken from the same

clock across two databases. This is not accurately possible unless the databases are

within the same database instance. Second, this means that neither the source nor

the target database have a consistent (and complete) data sets. It is not clear to me

http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 15/31

how it can come to this situation and how to manage consistency (I suspect the

discussion in step 3 means that write failures to the target database can be ignored).

However, since the references [2] mentions it, it is important to mention it here

because of the data consistency implications.

Operations beyond update, insert, delete and update:

Aggregation. Any form of aggregation depends on a complete data set (or a

complete subset that is in scope of the aggregation queries). If a query counts the

number of unique addresses, all users and all addresses have to be accessible. In a

dual-write situation this is only supported and possible if at any point in time the

source or the target is the primary database that is consistent and complete. If the

dual-write variant cannot ensure a single consistent database at any point,

aggregation queries will return inaccurate results during the data migration.

Alternatively, aggregation queries have to be rewritten to derive their result by

accessing both databases.

Join. Like in case of aggregation operations, a join only provides correct data on a

consistent and complete data set.

Side effect operations:

Stored procedures, triggers, etc. In some cases database schemas have stored

procedures, triggers, or additional operations that are database local. The individual

implementation has to determine if those can operate concurrently on the source

database and the target database. If they cannot work concurrently on both

(meaning, on incomplete data on the target database), those will have to be

switched off on the target database (non-primary database) until it is data complete

and consistent. However, if switched off, any data migrated, updated, etc. will not

cause any side effect that is required for consistency (e.g., a stored procedure

updating the database itself). This will make the dual-write migration an impossible

variant to use.

External database access. Some database schemas use triggers to communicate

with downstream systems, or use external tables to access upstream systems. As

before, the specific implementation has to determine if those can be enabled on the

target database during migration and if consistent behavior is taking place.

http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 16/31

Transaction logs. Some use cases rely on transactions logs. Changes made in the

database are observed and downstream functionality is triggered. In order for these

use cases to work it is necessary that operations in the source as well as the target

database are executed in the same way so that the transaction logs are equivalent as

well. For example, as discussed above, an update on the target must not be

converted into an insert if the data was not migrated before.

Relationships:

One-level relationships: As discussed above, one-level relationships —

relationships between two tables — that are implicit or explicit have to be addressed

by the code accessing the target database.

Multi-level relationships: Like one-level relationships multi-level relationships

have to be taken care of by the client code accessing the target database. In a schema

with many multi-level relationships complex traversals might be required to ensure

that the required data is migrated during operations that require the data to be

available. In the worst case, if the data set represents a tightly connected graph, the

first operation requiring migration might have to migrate over all data before it can

continue (e.g., insert or update).

Reference [3] points out that it might be impossible to find all operations accessing the

source database in the code base even though the target database is the primary. If the

source database is taken offline, this might cause errors in production. In my opinion I

would consider refactoring the client code first before starting the database migration to

ensure that all operations can be enforced to execute exclusively on the target (by means

of e.g. a code switch). One type of refactoring would be the explicit access path

management for both databases separately. A further refactoring would be to isolate all

access operations in a separate architecture layer that can be configured and reviewed as

a separate component.

CDC database migration. Except for side effect operations that write access to external

data sources none of the above issues are present in the CDC database migration

variant. Operations that write access to external data have to be analyzed in order to

understand if switching those off during migration avoids any downstream system

issues (since the source database is taking care of it already). If switching off is not

https://engineering.gusto.com/old-write/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 17/31

possible, refactoring of those might be required in order to make the database migration

possible.

Tables without primary keys
It is possible that tables exist that do not have primary keys. This makes database

migration difficult or impossible when data consistency is to be guaranteed as tables

without primary keys cannot be analyzed (e.g., does a row exist? Can the same values be

in two or more rows?) without understanding the code operating on those tables.

The recommendation is to ensure that all tables have primary keys and refactor the code

and the schema before embarking on a database migration. A second, less preferable

approach, is to migrate tables without primary keys completely first during a client

downtime period before the regular migration starts as a preliminary setup. This

ensures that client logic does not have to do the migration of key-less data, but only

execute subsequent changes (insert, update or delete).

Consistency
Consistency is discussed separately because of its inherent complexity in case of the

dual-write variant. The following discussion assumes that one of the two databases is

the primary at any point in time, and that once the target database is the primary, the

source database is consistent with it (true copy). If this is not the case, then consistency

is not given by the database state of one database (its content), but by read access

operation results across databases and only if their combined data state is consistent

(see discussion above).

Partial transaction abort (transaction coordination). As discussed in the

preliminaries above, transactions cannot span the source and the target database

(unless migration between tables within the same database is implemented). This

means, for example, that an update of a primary key row in the source and the target

database are two different transactions: one on the source and one on the target

database ([2] points this out explicitly). In order for the databases to be consistent,

both transactions have to succeed or fail. While distributed transactions would

guarantee this behavior, in their absence the client code has to ensure this behavior.

This means that a client has to be able to recover from a source transaction failure or

a target transaction failure if the transaction of the other database succeeds. In

http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 18/31

addition, this recovery has to work in presence of concurrent transactions on the

same object (primary key) while transaction failures are taking place (this is core

database logic of concurrency and serializability). If implemented correctly, it

replicates the two-phase distributed transaction protocol in the client code.

Sequential transaction reordering. If a client issues two updates right after each

other on the same user (same primary key), four transactions will be executed.

However, in the absence of distributed transactions, the order of the two

transactions on the target database can be the reverse from those on the source

database, leading to data inconsistencies, as the user’s state would different in the

source and the target database. This can only be avoided if the client code explicitly

ensures that sequential transactions on the same primary key are executed in that

order on both, the source and the target database.

Concurrent transaction reordering. If two different clients issue for example an

update on the same user (same primary key) concurrently, four transactions are

executed. Since the transactions are independent of each other, they can be

executed on the source and the target database in a different order. Unless client

code implements cross-client coordination, data inconsistency can occur as the state

of the source and target database can be different.

Concurrent transactions requiring data migration. One of the use cases is that

two concurrent updates are initiated by clients on a user (same primary key)

whereby the user has not yet been migrated to the target database. Both updates will

determine that the user has to be migrated first (see above update discussion).

While the first client migrates the user first before executing the update, the second

client might try to do the same (as it is executing concurrently and unaware that the

migration took place in the meanwhile), experiencing a failing insert (migration)

because the data has been migrated already by the first client. This scenario has to

be explicitly covered by the client code. One possible approach is re-execution of the

second client’s update transaction.

Concurrent transactions with relationships. Similar to the discussion in the

previous bullet, concurrent transactions issued by clients might require migration of

related data. One use case is when migrating a user, its addresses have to be

migrated as well. Concurrent transactions might try to do this twice, as discussed



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 19/31

before. A different use case is n:1 relationships where the “1” side has to be migrated

only once, while each of the “n” has to be migrated n times (each row once). In this

case n-1 transactions have to be prepared for the case that the “1” side was already

migrated.

The topic of validation of consistency between the source and the target comes up:

The most helpful approach is to have distributed transactions as many possible

violations would be caught automatically by it.

Another approach is to have each transaction check if it encounters a consistent data

set before it applies changes, and that it leaves a consistent data set behind after

making changes. The client would abort the transaction if it encounters or would

leave behind an inconsistent state (however, that would run into the larger

transaction coordination problem as discussed above).

Yet another approach is comparing source and target databases on a regular

schedule. However, the question arises: what to do if inconsistencies are detected?

How would those be mitigated and fixed?

Various references (e.g. [3]) suggest constant monitoring or continued statistical

analysis. While this might detect inconsistencies (or might not as it is not 100%

guaranteed to find all inconsistencies), the question arises how to react to found

inconsistencies and how to compensate or fix them. And, what to do if inconsistent

data was read by users or downstream systems that in turn modified data based on

the read data?

The references make clear that data consistency is a chief concern, but they also show

that there is only a best effort, without the guarantee that all inconsistencies can be

found, let alone fixed or subsequent processing that took place on inconsistent data be

compensated. In such a situation, many inconsistencies might exist, and only become

visible long after the switchover to the target, and maybe only when customers or users

start complaining and data consistency bugs are filed.

In the CDC database migration variant consistency is established by process and its

guarantees (like exactly once processing of transaction log records). In case one of the

involved databases or systems fails, and a system failure causes inconsistency on the

https://engineering.gusto.com/old-write/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 20/31

target database, the mitigation is straight forward: delete the target database and start

over. This is possible because the source is the primary until the switchover and no client

logic depends on the target database until then. In the dual-write case a reset and restart

from the beginning is possible as well but only if the source database is the primary and

it is 100% consistent with the target after every transaction once the target becomes the

primary. Of course, any external dependencies must be reset as well. If the target

database is being used by clients while the migration is ongoing, a reset might not be

possible.

The next section discusses back fill. It could have been part of the consistency discussion

as well, however, due to its own complexity it is appropriate to discuss it separately.

Back fill
In the dual-write variant data is only migrated to the target database if a client accesses

data that has not been migrated yet, and the client code contains migration logic that is

executed. However, there is no guarantee that every data item is accessed by clients in a

specific time period in which database migration is to be completed. Since data might

not be accessed by clients within the given migration period, a separate process is

needed to migrate these data items. This separate process is independent of the client

logic in order to migrate the remaining data. This process is referred to as “back fill”.

Back fill needs to determine the data set from the source database that has not been

migrated to the target database: it basically has to perform a difference between two

data sets. This is a whole separate development effort. There are many ways to

accomplish this and the access path management might contribute to this process. For

example, [1] reports creating a database snapshot (not referring to the access path

management) and using a Hadoop cluster.

No matter how back fill determines the data items that it needs to migrate from the

source to the target, it has to be online as well, meaning, neither the source or target

database are quiesced for this process. It needs to take into consideration:

Concurrent client data migration. While back fill is ongoing, and while it

determines that it needs to migrate a data item, that data item might have already

been migrated concurrently or is in the process of being migrated concurrently in a

https://stripe.com/blog/online-migrations


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 21/31

concurrent client transaction. This concurrent processing must guarantee the data

consistency and back fill for this data item must fail in this case to avoid interference.

Data relationships. Client code by its nature understands and is aware of data

relationships (e.g., that a user has addresses in a foreign key relationship). Back fill

as separate code needs to ensure that it implements the exact same data semantics

in its logic. This applies not only for explicit relationships, but also for implicit

relationships. Depending on how the migration code is implemented and structured,

back fill might reuse the same code. If it implements its own code, migration

functionality is duplicated and needs to be kept in sync with the corresponding client

code.

Client code logic. Some client code logic might not only migrate the data, but might

update additional tables, like for example history tables to keep track of data

changes. Back fill has to implement the exact same logic.

Based on the above brief discussion on back fill, it would be interesting to consider

implementing the back fill process not as a separate process with its own separate logic,

but find a way to have the back fill process trigger client code so that the migration of

the data items it determines uses the client logic, instead of its own logic. This heavily

depends on how client logic is implemented, however, the upside would be that the back

fill process does not replicate logic that already exists in the client code.

None of the references I found discusses the back fill in such detail that it is clear how all

the above is actually addressed and implemented.

Fallback option
In some contexts a possible fallback is prepared from the target database (the new

primary) to the source database (the former primary) in case of unforeseen issues on

the new primary, especially after the clients reconnected and start accessing the new

primary database. In terms of data consistency this only works if the source database

continues to be kept up-to-date with the primary.

In the dual-write variant this means that clients have to continue to write to both

databases (the primary and source database) so that the source database is kept in sync

https://cloud.google.com/solutions/database-migration-concepts-principles-part-2#fallback_processes


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 22/31

with the primary. All the above discussed issues remain, now in the reverse direction, so

to speak.

CDC database migration. In this variant the reverse migration process is set up, from the

primary to the source database. Clients operate on the new primary without any

changes to their code required in order to continuously replicate the data from the

primary to the source database.

Schema updates
It is possible that the client logic requires a schema update to address a change in

business logic code and related data management independent of the migration logic.

While it is possible to change the schema during migration, it adds complexity as not

only the client code and database schema has to be updated, but the dual-write

migration logic as well. Depending on the phase the migration is in, the change might be

different. My recommendation would be to avoid schema updates on any database

involved in the migration at all if possible during migration and defer it to after the

migration completed.

A different type of schema update can be required as part of the migration logic itself. In

[1] the decision was made to carry over an (existing) array of subscriptions from the

source to the target schema while implementing a subscriptions table on the target

schema holding the same data (basically duplicating the data for the duration of the

migration: kept in the former data structure and added to a new data structure in the

target database). Once the migration completed and once the subscriptions table

became the primary source, the array of subscriptions was removed. This is an example

of a schema change (and corresponding code change) being deferred until after the

completion of the migration.

CDC database migration: in general schema changes can be detected and handled by

CDC database migration; it depends on the specific technology deployed if and to what

extent this is possible. However, schema changes might require to change the

transformation rules transforming data from the source database before being applied

to the target database. Since such a change is a transformation code change affecting the

migration logic, my recommendation would be to defer schema changes to after the

migration completed (if possible).

https://stripe.com/blog/online-migrations


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 23/31

System failures
There are several systems involved in the dual-write variant:

Client(s)

Source database

Target database

Each of these systems can fail independently of any of the other systems. If a client fails,

then this stops the database migration. A failure has no impact on the migration, it just

delays it.

If either the source database or the target database experiences and outage then the

question arises how clients should proceed. Since the client code is performing the data

migration and is tasked with ensuring data consistency, the only option is to stop the

client code until both databases are available again. The big caveat is if the unavailable

database had to be recovered from backup. If it was recovered from backup, data loss

might have occurred if the backup did not capture the latest change before the outage.

In this case both databases have to be synchronized first (which might be a major

undertaking based on the particular context).

As a side note, an outage does not have to be a crash. It could be an unavailability as

well, meaning, a restart of the database itself, or an upgrade window taking place. In

general, an outage makes the database inaccessible.

CDC database migration: In the CDC database migration case, a client outage does not

impact the database migration. If the source database experiences an outage, the client

is impacted, but the target database is not impacted. If the source database has to be

recovered from backup, it might have lost transactions. The simplest way to synchronize

the target database again has two sub-cases: (a) if the target database can be restored

from the same backup, then this ensures that both the source and target are in sync. (b)

if the target database cannot be restored from the same backup (because for example it

has a different schema), migration can start from the beginning by removing the target

database and creating a new one. If the target database experiences an outage the same

process takes place: if it did not experience a data loss it can simply continue. If it

experienced a data loss, migration can be restarted, or replayed if the migration



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 24/31

technology kept the CDC records. Compared to the dual-write situation, the processes to

recover in the CDC database migration case are a lot less complex, and a target database

outage does not impact database migration from the viewpoint of a client impact.

Completion
The discussion so far has focused mainly on the phase before and during the migration.

However, at some point the database migration is completed and cleanup has to take

place.

The database migration itself is completed when the target database becomes the

primary (implying that it contains the complete and consistent data set). Once the new

primary is available, clients will be reconnected to the new primary and all access is

executed on the new primary. Before allowing clients to access the new primary, it

would be good to have a consistent backup of the database as a defined starting point.

The source database is still deployed, while not being used. While it is possible to keep it

around, it will be inconsistent as soon as the first transaction commits on the new

primary. Because it is inconsistent it can be turned down and the resources that it uses

removed. In the case that the source database is kept in sync in order to implement the

fallback option, completion of the database migration is only when the fallback option is

not required anymore.

The item with the biggest impact, however, is the dual-write migration code that was

added to the client’s code in order to perform the database migration. This code is not

required anymore and it is best practice to remove code that will not be executed

anymore (and because it is a code change, testing is required). There might be the

thought of keeping the code for a future database migration project. While this is

certainly a consideration, it might be a better strategy to remove the code and instead

consider a code refactoring after a postmortem to improve the code base instead for a

future database migration.

CDC database migration. The database migration is completed when the target database

becomes the primary and clients are reconnected to it. The source database can be

turned down as well (unless delayed for the fallback option). However, since the client’s

code was never modified to perform the migration, no change, removal or refactoring is

required.



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 25/31

Migration between tables in the same database
When migrating between tables in the same database, changes to both, the source and

target table can take place in a single transaction, removing all distributed transaction

concerns and the possible failure situations when having to use independent

transactions for accessing source and target tables.

A particular schema related error can occur in context of foreign key relationships to the

source table: when a table has a foreign key relationship (table other than source or

target table) then this is a dependency that has to be addressed. At the point in the

process where the new table is made the primary table (source of truth) the foreign key

relationships have to be redefined in the schema definition. This is a separate step, and it

might run into error situations where foreign keys do not exist (yet). Furthermore, if the

primary key definition on the target table changed, the foreign key relationships have to

be changed accordingly. [3] mentions possible error situations.

Non-schema based dependencies (e.g. foreign data wrappers) on the source tables

might also exist. Those are not as easy to spot as dependencies that are expressed in the

schema definition, however, have to be addressed as well, of course.

CDC database migration: migration between tables within a database are possible with

CDC database migration as well without restriction. In this case the issue related to

foreign keys (and other dependencies between tables) has to be addressed as well.

Testing
The topic of testing the migration is not discussed in detail in the references, however,

testing requires a separate discussion. Testing must confirm that the database migration,

once started, completes successfully. Any error during testing will have to be fixed, and

testing restarted.

However, there might be edge cases that are not caught by testing immediately, and only

show up when the migration of the test data occurs. In that case there are different

alternatives on how to proceed:

Stop the migration, fix the migration code, test the fixes (and update the test suite),

and reset as well as restart the migration from the beginning

https://engineering.gusto.com/old-write/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 26/31

Stop the migration, fix the code, fix the data, and continue the migration

The first alternative is the more reliable approach as the consistency of the data is

ensured in the target database as no manual modification is required. The restart will

incorporate the fix of the bug — however, this requires the ability to start the migration

from the beginning.

The second alternative is fraught with possible downstream issues: this alternative relies

on the ability to be able to correct the data during migration. Since fixing the code and

fixing the data is concurrent to production, more errors might show up while the code is

being fixed every time. This alternative works only if the target database is not accessed

by clients for production, and if the clients (that are continuing to run) can deal with

stopped migration. If they cannot, then this alternative does not work, instead, the

migration has to continue while the code and the data is fixed.

CDC database migration: since the target database is never the primary, and since clients

are not affected, the database migration can be restarted at any time from the beginning

to address any issues that might come up.

Observation: data consistency uncertainty
All references clearly emphasize that data consistency is important. At the same time, all

three references are not confident that the client code will produce a consistent target

database from the source database. This is lack of confidence is expressed by the

references describing the approaches put in place to monitor production for access

issues and data issues:

[1] expresses uncertainty about data consistency between source and target

database: “We need to be sure that it’s safe to read from the new Subscriptions table: our

subscription data needs to be consistent. We’ll use GitHub’s Scientist to help us verify our

read paths.” First of all, this means that there is the expectation that inconsistencies

can occur, meaning, it is “clear” that the client code performing the migration most

likely will not create a consistent target database. A separate system (Scientist) is put

in place comparing the source and the target database alerting any difference when

reading the “same” data item. However, it is not explained how differences are dealt

with, and how the code that created the inconsistency is found and fixed. All this has

https://stripe.com/blog/online-migrations
https://github.com/github/scientist


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 27/31

to take place during a running migration as the goal is to perform an online

migration (aka, zero downtime). So while the inconsistencies are addressed,

additional inconsistencies might be created. In addition, in order to find all

inconsistencies, the system detecting inconsistencies must have a complete coverage

of all possible inconsistencies.

[1] also expresses that there is concern after the target database is made the primary

database: “For each code path, we’ll need to use a holistic approach to ensure our

changes are safe. We can’t just substitute new records with old records: every piece of

logic needs to be considered carefully. If we miss any cases, we might end up with data

inconsistency. Thankfully, we can run more Scientist experiments to alert us to any

potential inconsistencies along the way.” This means that there is a constant and

continued concern about data consistency and that the client code might not have

addressed all access correctly.

[2] realizes that code might fail and states “Notice that in this step the “old” database

is in a consistent state while the “new” database can potentially be inconsistent since the

writes to it can fail while the “old” database write succeeded. It is important to let this

step run for a while (several days or even weeks) before moving to the next step. This will

give you the confidence that the write path of your new code works as expected and that

the “new” database is configured correctly with all the replications in place.” This

means that production is monitored to detect any issues. Since there is no guarantee

when errors show up, a longer time frame of observation is suggested expecting that

errors show up if there are any. Like in the other references it is not described how

any missing or inconsistent data is corrected.

[3] states “Over the course of several days, we keep an eye on our bug reporting service

(Bugsnag) for incorrect single reads in production and fix them as they come in.” This

(like the other references) indicates the uncertainty if data is consistent and correct,

that the bug system is able to record errors and that the bugs are fixed in production.

As discussed, the bug fix probably refers to the code, and it is not clear if the bug

caused downstream issues if inconsistent data was used.

[3] employed additional monitoring to check for correctness: “We also add a regular

audit that verifies that our waivers table has 0 rows and our subscriptions table only

contains processed subscriptions!” After the data was migrated from the waivers table

https://stripe.com/blog/online-migrations
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime
https://engineering.gusto.com/old-write/
https://engineering.gusto.com/old-write/


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 28/31

(a source table), it was empty, and had to stay empty if all the code locations work

properly. Since there was uncertainty if all code locations were refactored,

monitoring the waiver table was necessary to see if any incorrect write takes place.

I want to highlight the fact that the references point out clearly that any code bug has to

be fixed, but there is no discussion on the impact of incorrect data for downstream

processing and how incorrect data is corrected. I think that in general data can be

corrected only in the case of very simple data models. If dozens or hundreds of tables or

collections are present, data corrections might be impossible, especially if the error rate

is high.

When is dual-write online database migration an option to
consider?
The above discussion points out many aspects that have to be addressed to make the

dual-write variant of database migration a feasible, reliable and dependable option. Are

there specific use cases where the above aspects do not apply at all or only a subset of

them? Here some speculations from my side:

A data set might represent the data as closed and complete data structure. For

example, all data about a user are in a single document and there are no references

to and from that document to any other. All access is by primary key only and a

client reads and writes the complete document every time. No aggregation or join

queries are in the system. In such a case, dual-write has less aspects to consider.

What needs to be addressed are for example concurrent access supervision, system

failure handling, back fill, aka, all aspects that are not related to individual query

processing.

Another use case might be an extremely simple data model and schema that allows

understanding the data set completely independent of any client code accessing it.

In this case it might be possible to implement verification after every database access

that migrates or modifies the data set. I am not sure how many production systems

fall into this category. One interesting note here is that the use case of [1] has a

simple schema, yet its migration has to address a lot of the aspects discussed here.

https://stripe.com/blog/online-migrations


6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 29/31

A very different use case is the situation where the client code can be written in such

a way that it guarantees data consistency by its construction. This means that the

code addresses all the above aspects completely and does not leave the possibility of

data inconsistency (neither by itself, or any external event like a system failure). The

hard part is to ensure that this is actually the case and to prove it.

There might be additional use cases, of course, where the dual-write variant works; the

above bullet points do not represent a complete list.

Why is CDC database migration more reliable?
Interesting enough, CDC data migration falls into the category of code guaranteeing

data consistency. The chief reason is that the database migration logic is independent of

the client logic, aka, the migration logic is implemented by a separate migration system.

It bases its functioning on the consistent behavior of the source and target database

(transaction logs and transaction consistency on the query interface). If such a

migration system guarantees ordered and exactly-once application of every source

database change to the target database despite system failures, it produces a consistent

target database.

This should not be underestimated: any error or bug that appears in the migration

system can be addressed independently of the clients accessing the source database. And

in general, once a bug is fixed, the migration can be restarted removing any possible

inconsistent data from the target database.

What if the source database does not have a transaction
log for CDC?
Not all databases support a CDC interface, meaning, a transaction log that is exactly

once, transaction ordered and has a complete set of changes. This does not mean that

the dual-write variant is the only option left. Instead the following can be considered:

incremental batch readers.

An incremental batch reader keeps reading the source database tables using the

database query interface and extracts the rows that have been modified since the last

time the reader read changes. As the batch reader keeps reading, changes are extracted

and can be applied to the target database.



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 30/31

For this to work a “flag” (aka column) has to be added to every table that stores a value

for each row and that value is updated when the row is changed. Based on this an

incremental reader can determine the changed rows since the last read. For example, a

transaction id, or a timestamp. For example, the reader reads all rows greater than a

transaction id and stores the highest transaction id read. The next time it reads again,

this time from the stored transaction id.

Deletes have to be addressed as well. The two main alternatives are logical deletes that

are indicated by a delete flag, or capturing deletes in a separate table.

In this case the clients have to be modified in order to store an additional value in the

additional column (an additional column for each table). While it requires to modify the

client code, the logic is a lot simpler and less brittle than the dual-write variant since it

updates only values related to the regular data model without having to implement the

migration logic. On the target database side, clients can ignore the additional column by

leaving those out in the query projection clause.

Conclusion
The above discussion compared two variants of online database migration and outlined

the many risks when using the dual-write variant compared to the CDC based variant.

The discussed issues and risks are not a 100% complete list, depending on the particular

migration additional issues and risks might have to be addressed.

My recommendation is: when embarking on online database migration, before choosing

the dual-write variant, analyze the CDC variant carefully first in order to base the

decision on the effort, the risks, and any error situations that might come up and have to

be addressed. Above all, data integrity and consistency must be the guiding principle

unless that does not play a role at all in your context.

My conclusion is to not consider the dual-write variant as a regular approach to

database migration, but as an edge-case approach and only if all other options were

invalidated or ruled out. And even then I would attempt to ensure data consistency by

code design, and not by monitoring and fixing migration bugs in the production system.

References



6/23/2020 Online Database Migration by Dual-Write: This is not for Everyone

https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b 31/31

[1] Online migrations at scale

[2] Safe Database Migration Pattern Without Downtime (Internet archive link)

[3] Zero Downtime Table Migrations using a Double Write Methodology

[4] https://www.quora.com/How-big-companies-migrate-from-one-database-to-

another-without-losing-data-i-e-database-independent/answer/Siddharth-Anand

[5] https://cloud.google.com/solutions/database-migration-concepts-principles-

part-1

[6] https://cloud.google.com/solutions/database-migration-concepts-principles-

part-2

[7] https://www.slideshare.net/aviranwix/road-to-continuous-delivery-wixcom

Disclaimer
Christoph Bussler is a Solutions Architect at Google, Inc. (Google Cloud). The opinions

stated here are my own, not those of Google, Inc.

Database Migration Change Data Capture Database

About Help Legal

Get the Medium app

https://stripe.com/blog/online-migrations
http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime/#ixzz3vsEunxmA
https://web.archive.org/web/20200507140845/http://www.aviransplace.com/2015/12/15/safe-database-migration-pattern-without-downtime/
https://engineering.gusto.com/old-write/
https://www.quora.com/How-big-companies-migrate-from-one-database-to-another-without-losing-data-i-e-database-independent/answer/Siddharth-Anand
https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://www.slideshare.net/aviranwix/road-to-continuous-delivery-wixcom
https://medium.com/tag/database-migration
https://medium.com/tag/change-data-capture
https://medium.com/tag/database
https://medium.com/?source=post_page-----cb4307118f4b----------------------
https://medium.com/about?autoplay=1&source=post_page-----cb4307118f4b----------------------
https://help.medium.com/?source=post_page-----cb4307118f4b----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----cb4307118f4b----------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----cb4307118f4b----------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----cb4307118f4b----------------------

